How applications are run
on Android ?

Jean-Loup Bogalho & Jéeremy Lefaure
clippix@lse.epita.fr
blatinox@Ise.epita.fr

mailto:clippix@lse.epita.fr
mailto:clippix@lse.epita.fr
mailto:blatinox@lse.epita.fr
mailto:blatinox@lse.epita.fr

s wh =

Table of contents

Dalvik and ART
Executable files
Memory management
Compilation

What is Dalvik ?

Android’s Virtual Machine

Designed to run on embedded systems
Register-based (lower memory consumption)
Run Dalvik Executable (.dex) files

What is ART ?

Android RunTime

Dalvik’s successor

ART Is Not a JVM

Huge performance gain thanks to ahead-of-time
(AOT) compilation

Available in Android 4.4

What is ART ?

Performance Boosting Thing, realized

Art vs. Dalvik: CPU Performance (Nexus 5)

24
x
=Y
g 1.8
2
o
()
% 1.2
£
o
2
0.6
. \] X e Q&
? e o O & (> S e O
N N OV ©0° O 2 N2 ARV
\a‘\k\s OO«\Q o o° \,\(\Q“ 96°e e Oe\z‘ (\e\‘\ c:,o\"“\
N A\ o) I
o) N\
P
P*(\

M Dalvik
 Art

System

Laboratory of Epita

Executable files

Dalvik: .dex files

e Not the same bytecode as classical Java
bytecode

e .class files are converted in .dex files at build
time

e Optimized for minimal memory footprint

Dalvik: .dex files

Jjar file
.class file .class file .class file
Heter n Heter n Heter n
SR ST other data gieiogensons other data eterogeneous other data

constant pool

constant pool

constant pool

Y Y \ 4 Y Y v
string type proto field method
constant | | constant | | constant | | constant | | constant other data
pool pool pool pool pool

.dex file

Dalvik: application installation

e \erification:
- bytecode check (illegal instructions, valid indices,...)
- checksum on files
e Optimization:
- method inlining
- byte swapping and padding
- static linking

ART: OAT file

e Generated during installation (dex2oat)
e ELF format
e Classes metadata

ELF file

ELF Header

OATdata symbol

Dex File 1

Dex File D

Class 1 Metadata

Class C Metadata

Compiled method 1

Compiled method M

(—.

«—

.rodata

ext

System

Laboratory of Epita

Memory management

Zygote

Daemon started at boot time

L oads and initializes core libraries

-orks to create new Dalvik instance

Startup time of new VM is reduced

Memory layouts are shared across processes

Dalvik: memory management

e Memory is garbage collected
e Automatic management avoids programming

errors
e Objects are not freed as soon as they become

unused

Dalvik: memory allocation

e Allocation profiling:
o allocation count (succeeded or failed)
o total allocated size (succeeded or failed)

e malloc function is more complex since memory
IS garbage collected

Dalvik: memory allocation

Heap
Allocation
Return pointer on
n
@ yes allocated me@
no

Dalvik: memory allocation
|

no

Wait for GC

no

¥
GC

l

Heap
Allocation

Dalvik: memory allocation

Heap
Allocation
Return pointer on
n
Success * yes allocated me@
no

¥

Grow up size of heap
and Heap Allocation

Dalvik: memory allocation

Grow up size of heap
and Heap Allocation

Return pointer on
n
Success * yes allocated me@

no

¥

GC
(collect SoftReferences)

Dalvik: memory allocation

GC
(collect SoftReferences)

Heap
Allocation

Return pointer on
allocated memory

Success ? yes

OutOfMemory
Exception

System

Laboratory of Epita

Dalvik: garbage collection

e Mark and Sweep algorithm

- depends on the size of the heap
- collects all garbage

e Stop the world before Android 2.3
e Mostly concurrent (2 pauses)

Mark and Sweep

Mark and Sweep

- .
.
S

Step 1: Mark the roots

Mark and Sweep

e

Step 2: Recursively mark reachable objects

Mark and Sweep

Step 3: Sweep unmarked objects

ART: garbage collectors

e GC faster
e |ess fragmentation: moving collectors
e Concurrent, only one pause

ART: Rosalloc

e new allocator()
e Scales better for multithreaded applications

ART: Rosalloc

Fast allocation

MemAllocTest (4 Threads) B s

: B Daivik

B ART (before)
Ml ART (path opt)
B ART (rosalloc)

Q

HosUxB6

Hostx86

JIT and AOT compilation

JIT and AOT compilation

e \ocabulary:
- Just In Time compilation
- Ahead Of Time compilation
- Hot code / Cold code
- Granularity
e Purpose
- Better performance

JIT and AOT compilation

e Granularity
- Bigger:
. Performance (optimizations)
= Less context switches, synchronizations
= Less re-usability
- Smaller:
= Ihe opposite

JIT and AOT compilation

e \When should we compile?
- When you can accept latencies
- Later compilation allows more optimizations
- Coarse grained:
- Installation
= Launching
- Execution (1 more thread to run)

JIT and AOT compilation

e Drawbacks:
- CPU time (compilation)
- Memory (results of compilation, tables)
- Mostly: time

Dalvik: JIT compilation

e Operate on traces (~100 instructions)

e During program’s execution
e \Why:
- Hottest portions are compiled
- Small translation cache
- Performance boost is early perceived

- lgnore jumps and method calls
- Good trade-off between speed and memory

Dalvik: JIT compilation

e One thread by Java application

- Shared between every threads
- Not shared between processes
- Use private pages

e Re-done at every run of the application

e Several target architectures
- ARM, MIPS, x86

- Values and code generation that differs (performance,
instructions set)

Dalvik: JIT compilation

e Stages:
- Profile traces
- lrace Is considered hot:

= Compiled version ?
« Yes:use it
« No: ask for a compilation

- Repeat

e Compilation:
- Task queue full => flush or block every other threads

Interpret until .
(surt) noxtmoental |4 Dalvik Trace JIT Flow
trace head ‘ ’ ‘
4 R
Translation Cache
Update profile
count for this Threshold? >
' >
location N
I Trenshton
® Eatl
’ Ext0 Exit] @
Interpret/build Xlation Ext 1
trace request exists?
E Submit campilation
' request
¥
Translation
n2dinew
H nshton
Compiler Thread = }---=rt.doceoeaaaaa.. — i
Eat1 .
\ J

Google @l(®)

Dalvik: Tuning and debugging

e Debug options enables:
- Statistics
- Debug information
e Types of profiling:
- Continuous polling
- periodic polling (user defined)

Dalvik: Tuning and debugging

e Statistics:
- lTraces
- Compiled traces
- Calls to compiler
- Number of traces profiled
- Number of chained translated blocks
- Time spent in compilation
- Time during which the GC was blocked

Dalvik: Tuning and debugging

e Tunning:
- Slze of translation cache
- Threshold to compile a trace
- Maximal length of a trace
- Layers and filters for hotness

e Debugging:
- Comparison of the results of interpreted and compiled
versions

ART: AOT compilation

e Compile at install-time
e Use llvm

ART: AOT compilation

e Stages (dex2oat):
- Resolution
- Verification
- Initialisation
- Compilation

Conclusion

http://blog.lse.epita.fr
#lse on rezosup
blatinox@Ise.epita.fr
clippix@lse.epita.fr

http://blog.lse.epita.fr
http://blog.lse.epita.fr
mailto:blatinox@lse.epita.fr
mailto:blatinox@lse.epita.fr
mailto:clippix@lse.epita.fr
mailto:clippix@lse.epita.fr

QUESTIONS?

