
How applications are run 
on Android ?

Jean-Loup Bogalho & Jérémy Lefaure
clippix@lse.epita.fr 

blatinox@lse.epita.fr

mailto:clippix@lse.epita.fr
mailto:clippix@lse.epita.fr
mailto:blatinox@lse.epita.fr
mailto:blatinox@lse.epita.fr


Table of contents

1. Dalvik and ART
2. Executable files
3. Memory management
4. Compilation



What is Dalvik ?

● Android’s Virtual Machine
● Designed to run on embedded systems
● Register-based (lower memory consumption)
● Run Dalvik Executable (.dex) files



What is ART ?

● Android RunTime
● Dalvik’s successor
● ART Is Not a JVM
● Huge performance gain thanks to ahead-of-time 

(AOT) compilation
● Available in Android 4.4



What is ART ? 



Executable files



Dalvik: .dex files

● Not the same bytecode as classical Java 
bytecode

● .class files are converted in .dex files at build 
time

● Optimized for minimal memory footprint



Dalvik: .dex files



Dalvik: application installation

● Verification:
○ bytecode check (illegal instructions, valid indices,...)
○ checksum on files

● Optimization:
○ method inlining
○ byte swapping and padding
○ static linking



ART: OAT file

● Generated during installation (dex2oat)
● ELF format
● Classes metadata





Memory management



Zygote

● Daemon started at boot time
● Loads and initializes core libraries
● Forks to create new Dalvik instance
● Startup time of new VM is reduced
● Memory layouts are shared across processes



Dalvik: memory management

● Memory is garbage collected
● Automatic management avoids programming 

errors
● Objects are not freed as soon as they become 

unused



Dalvik: memory allocation

● Allocation profiling:
○ allocation count (succeeded or failed)
○ total allocated size (succeeded or failed)

● malloc function is more complex since memory 
is garbage collected



Dalvik: memory allocation



Dalvik: memory allocation



Dalvik: memory allocation



Dalvik: memory allocation



Dalvik: memory allocation



Dalvik: garbage collection

● Mark and Sweep algorithm
○ depends on the size of the heap
○ collects all garbage

● Stop the world before Android 2.3
● Mostly concurrent (2 pauses)



Mark and Sweep



Mark and Sweep

Step 1: Mark the roots



Mark and Sweep

Step 2: Recursively mark reachable objects



Mark and Sweep

Step 3: Sweep unmarked objects



ART: garbage collectors

● GC faster
● Less fragmentation: moving collectors
● Concurrent, only one pause



ART: Rosalloc

● new allocator() 
● Scales better for multithreaded applications



ART: Rosalloc



JIT and AOT compilation



JIT and AOT compilation

● Vocabulary:
○ Just In Time compilation
○ Ahead Of Time compilation
○ Hot code / Cold code
○ Granularity

● Purpose
○ Better performance



JIT and AOT compilation

● Granularity
○ Bigger:

■ Performance (optimizations)
■ Less context switches, synchronizations
■ Less re-usability

○ Smaller:
■ The opposite



JIT and AOT compilation

● When should we compile?
○ When you can accept latencies
○ Later compilation allows more optimizations
○ Coarse grained:

■ Installation
■ Launching
■ Execution (1 more thread to run)



JIT and AOT compilation

● Drawbacks:
○ CPU time (compilation)
○ Memory (results of compilation, tables)
○ Mostly: time



Dalvik: JIT compilation

● Operate on traces (~100 instructions)
● During program’s execution
● Why:

○ Hottest portions are compiled
○ Small translation cache
○ Performance boost is early perceived
○ Ignore jumps and method calls
○ Good trade-off between speed and memory



Dalvik: JIT compilation

● One thread by Java application
○ Shared between every threads
○ Not shared between processes
○ Use private pages

● Re-done at every run of the application
● Several target architectures

○ ARM, MIPS, x86
○ Values and code generation that differs (performance, 

instructions set)



Dalvik: JIT compilation

● Stages:
○ Profile traces
○ Trace is considered hot:

■ Compiled version ?
● Yes: use it
● No: ask for a compilation

○ Repeat
● Compilation:

○ Task queue full => flush or block every other threads





Dalvik: Tuning and debugging

● Debug options enables:
○ Statistics
○ Debug information

● Types of profiling:
○ Continuous polling
○ periodic polling (user defined)



Dalvik: Tuning and debugging

● Statistics:
○ Traces
○ Compiled traces
○ Calls to compiler
○ Number of traces profiled
○ Number of chained translated blocks
○ Time spent in compilation
○ Time during which the GC was blocked



Dalvik: Tuning and debugging

● Tunning:
○ Size of translation cache
○ Threshold to compile a trace
○ Maximal length of a trace
○ Layers and filters for hotness

● Debugging:
○ Comparison of the results of interpreted and compiled 

versions



ART: AOT compilation

● Compile at install-time
● Use llvm



ART: AOT compilation

● Stages (dex2oat):
○ Resolution
○ Verification
○ Initialisation
○ Compilation



Conclusion

● http://blog.lse.epita.fr
● #lse on rezosup
● blatinox@lse.epita.fr
● clippix@lse.epita.fr

http://blog.lse.epita.fr
http://blog.lse.epita.fr
mailto:blatinox@lse.epita.fr
mailto:blatinox@lse.epita.fr
mailto:clippix@lse.epita.fr
mailto:clippix@lse.epita.fr


QUESTIONS?


